319 research outputs found

    South Carolina's legislative process

    Get PDF
    This booklet has been developed to help bring about a better understanding of the procedure of lawmaking in South Carolina. It has attempted to give an overall view of the inside workings of the legislature, and has also included a glossary of legislative terms

    South Carolina's legislative process

    Get PDF
    This booklet has been developed to help bring about a better understanding of the procedure of lawmaking in South Carolina. It has attempted to give an overall view of the inside workings of the legislature, and has also included a glossary of legislative terms

    Evaluation of Novel Imidazotetrazine Analogues Designed to Overcome Temozolomide Resistance and Glioblastoma Regrowth

    Get PDF
    The cellular responses to two new temozolomide (TMZ) analogues, DP68 and DP86, acting against glioblastoma multi- forme (GBM) cell lines and primary culture models are reported. Dose–response analysis of cultured GBM cells revealed that DP68 is more potent than DP86 and TMZ and that DP68 was effective even in cell lines resistant to TMZ. On the basis of a serial neurosphere assay, DP68 inhibits repop- ulation of these cultures at low concentrations. The efficacy of these compounds was independent of MGMT and MMR func- tions. DP68-induced interstrand DNA cross-links were dem- onstrated with H2O2-treated cells. Furthermore, DP68 induced a distinct cell–cycle arrest with accumulation of cells in S phase that is not observed for TMZ. Consistent with this biologic response, DP68 induces a strong DNA damage response, including phosphorylation of ATM, Chk1 and Chk2 kinases, KAP1, and histone variant H2AX. Suppression of FANCD2 expression or ATR expression/kinase activity enhanced anti- glioblastoma effects of DP68. Initial pharmacokinetic analysis revealed rapid elimination of these drugs from serum. Collec- tively, these data demonstrate that DP68 is a novel and potent antiglioblastoma compound that circumvents TMZ resistance, likely as a result of its independence from MGMT and mismatch repair and its capacity to cross-link strands of DN

    Non-surgical spinal decompression therapy: does the scientific literature support efficacy claims made in the advertising media?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traction therapy has been utilized in the treatment of low back pain for decades. The most recent incarnation of traction therapy is non-surgical spinal decompression therapy which can cost over $100,000. This form of therapy has been heavily marketed to manual therapy professions and subsequently to the consumer. The purpose of this paper is to initiate a debate pertaining to the relationship between marketing claims and the scientific literature on non-surgical spinal decompression.</p> <p>Discussion</p> <p>Only one small randomized controlled trial and several lower level efficacy studies have been performed on spinal decompression therapy. In general the quality of these studies is questionable. Many of the studies were performed using the VAX-D<sup>® </sup>unit which places the patient in a prone position. Often companies utilize this research for their marketing although their units place the patient in the supine position.</p> <p>Summary</p> <p>Only limited evidence is available to warrant the routine use of non-surgical spinal decompression, particularly when many other well investigated, less expensive alternatives are available.</p

    Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair and p53.

    Get PDF
    The antitumor prodrug Temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (EC 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bi-functional analogs are reported and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bi-functional congener as optimized for potency, MGMT-independence and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development and their improved in vitro activity validates the principles on which they were designed
    • …
    corecore